Quantifying golf course resource use efficiency

Michael Bekken

Photo Credit: GEO Foundation

What are the grand challenges for golf in the future?

- Resource use
 - Water
 - Pesticide
- Climate change
 - Unpredictable weather
 - Drought
- Economic sustainability
 - Cost of maintenance
 - Labor

The game of Kolf was played in the Netherlands, circa 1300 to 1400

Mary, Queen of Scots, avid golfer (1542-1587)

Golf courses reach peak sustainability

T

1000 P

J.

Scotland, Circa 1900

Golf circa 1950: higher resource inputs needed for a uniform playing surface.

Golf Digest

Golf courses are more resource intensive than their Scottish forebears

CTAL LOOK LA

Drone Videos

Golf is global game

The global golf land area is slightly smaller than the area of Denmark

As more resources are used, concern about golf's environmental impact becomes widespread

Why the Decline of Golf is Good News for the Environment

October 12, 2014 by Elizabeth Klusinske 9 Comments

Golf / Sports

Pesticides on golf course may cause cancer

Dave Hilson Mar 01, 2017 • March 1, 2017 • 3 minute read

Could the Golf Course Green be Poisoning You and Your Child?

Future of golf depends on the sports ability to use resources efficiently

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

on the sustainable use of plant protection products and amending Regulation (EU) 2021/2115

Why the Decline of Golf is Good News for the Environment

October 12, 2014 by Elizabeth Klusinske 9 Comments

-1.0 -0.5 -0.2 +0.2 +0.5 +1.0 +2.0 +4.0 °C

-1.8 -0.9 -0.4 +0.4 +0.9 +1.8 +3.6 +7.2 °F

1. How to quantify golf course resource use (water, energy, fertilizer, pesticide)?

Fertilizer and pesticide

1

Energy used for maintenance

3. What may cause resource efficiencies to vary?

CONTRACTOR OF

Management practices Economic factors Regulatory environment

Maintenance budget ~ \$8,000,000

Maintenance budget ~ \$500,000

Research Questions 1 and 2	Water and Fertilizer (Nitrogen)	Pesticide and Energy
Difficulty of quantifying use?	Easy	Hard
How to quantify use?	 Water (m³) Nitrogen (kg) 	 Pesticide Risk Indicator Model Carbon footprint
How to define efficiency?	Ecosystem model	Growing season length calculation
Efficiency equation	Actual use / target use	Actual use / growing season length

Water Modeled by Water Balance

Energy Modeled by Carbon LCA

Fertilizer (N) Modeled by Growth Eqns.

Pesticide Modeled by Risk Eqns.

Pesticide risk to non target organisms

Pesticide risk = exposure * toxicity

We created a survey to collect data on golf course resource use

Demographics

Course type Maintenance budget Green Fee Revenue

Energy

Resource Efficiency Best Management Practices

BMP Best Management Practices Where Leadership & Action Intersect GCSAAD USCA

Golf courses surveyed across these regions in the US (5) and Europe (3)

Highlights of our findings for each of the four resources

Water

Fertilizer (Nitrogen)

Energy

Pesticide

Resource input 1: Water

Water use depends on the area irrigated, climate (rainfall, evapotranspiration), soil, grass type

Climate data from GridMET

Soil data from Web Soil Survey

We built a mathematical model that can simulate water use on golf courses and predict how much irrigation is needed based on the climate, soils, and grass type

The Tipping **Bucket Model**

Water

Our goal with these models is to develop a water use efficiency score for individual golf courses

The Tipping Bucket model predicts mean water use, but variance is high

Finding: We can predict median use of water on golf courses in the study. Some golf courses use water much more efficiently than others.

What might cause some golf courses to use more water than others?

Why is it important to use water more efficiently?

Resource input 2: Fertilizer (Nitrogen)

Nitrogen rate by region and golf course component is highly variable

Nitrogen rate (normalized by growing season length) by region and golf course component

Estimating golf course N targets - GP N Requirement Model

N Rate Nitrogen Efficiency Score (NES) = $\frac{1}{N \text{ target}}$ Cool Warm % Growth Potential Nitrogen target = $GP * N_{max}$ $GP = \frac{1}{\frac{1}{e^{\frac{1}{2}\left(\frac{T_{obs} - T_{opt}}{var}\right)^2}}$ $C3 N_{max} = 35 \text{ kg N} ha^{-1} mo^{-1}$ Temperature (F) (Stowell & Gelernter 2005; Woods 2013) $C4 N_{max} = 40 \text{ kg N} ha^{-1} mo^{-1}$

Nitrogen use efficiency is similarly variable

What might cause some golf courses to be more nitrogen use efficient than others?

Why is it important to use N efficiently?

Nitrate loss — Water quality decline

Resource input 3: Energy use (CO₂ emissions)

Resource input 4: Pesticide

Quantifying golf course ecological pesticide risk using the EIQ model

Environmental Impact Quotient

$$EIQ = \left(\left[C(DT * 5 + DT * P)\right] + \left[C * \left(\left(S + \frac{P}{2}\right) * SY\right) + (L)\right] + \left[F * R + \left(D\left(S + \frac{P}{2}\right) * 3 + (Z * P * 3) + (B * P * 3) + (B * P * 5)\right]\right)/3$$

Risk with respect to:

Some pesticides have higher pesticide risk than others – risk is composed of both toxocity and explosure

Pesticide risk by pesticide type – fungicides and herbicides have the highest risk in most regions

Pesticide risk by golf course components – depends on the region – greens or fairways have the highest risk

Regulatory environment seems to greatly influence pesticide efficiency score

 $Pesticide \ Efficiency \ Score \ (PES) = \frac{Pesticide \ Risk}{Growing \ season \ length}$

What might cause some golf courses to use more pesticide than others?

Comparing pesticide risk on WI and NY golf courses to agriculture in both states

Why is it important to use fewer pesticides?

3. How to create a single score to represent golf course resource use efficiency?

Eco-efficiency – creating a single score to optimize resource use

Eco-efficiency is critical in agricultural production, yield is an eco-efficiency metric

$Eco-efficiency = \frac{Economic \ output}{Environmental \ input}$

The second the second s

$$Yield = \frac{Weight}{Land area} = \frac{Kilograms}{Hectare}$$

Eco-efficiency metrics are important because they help define resource input levels

Fertilizer rate

Farmers use yields to calibrate resource input levels, the CV of N rate in northern US corn production is 25%

But what if you don't know your yield (i.e. golf courses), the CV of N rate in golf is often over 80%

We want to build an eco-efficiency model for golf

$$Eco-efficiency = \frac{Economic \ output}{Environmental \ input}$$

An Eco-efficiency model for golf
$$= \frac{?}{?}$$

What are the environmental inputs to a golf course?

Water

Fertilizer (Nitrogen)

Energy

Pesticide

What is the yield of a golf course?

Rounds of golf

Profit

Member satisfaction

If golf course yield is measured as rounds of golf, then the ratio of rounds to resource use is...

 $EE_{W} = \frac{Rounds}{Water\ use}$ $EE_{N} = \frac{Rounds}{Nitrogen\ use}$ $EE_{F} = \frac{Rounds}{Energy\ use}$ $EE_{P} = \frac{Rounds}{Pesticide\ use}$

Weigh each 25% = Eco-efficiency index

The eco-efficiency index of 7 European golf courses

The eco-efficiency index of 21 US golf courses

What a does high eco-efficiency golf course look like? An example from a European golf course

Environmental inputs: very low

- Near zero pesticide use (strict gov regulation)
- Very low fuel use (electric mowers)
- Moderate fertilizer inputs
- Efficient irrigation use

Economic output (rounds): medium high

• 54,000 annually

 $Eco-efficiency = \frac{Economic \ output}{Environmental \ input}$

Eco-efficiency: very high

Conclusions

- Golf course water, fertilizer, and pesticide use efficiency is highly variable
- That variation itself is an indication that we can be more efficient as an industry
- 3. Using less resource is often best both agronomically and environmentally!
- 4. Eco-efficiency is a framework we can use to become more efficient

Becoming a data driven greenkeeper: example of some useful annual metrics

Track (annually)

- Fertilizer: kg N ha⁻¹ yr⁻¹ on greens, tees, fairways, roughs
- Pesticide: kg ai ha⁻¹ yr⁻¹ on greens, tees, fairways, roughs
- Water: m³ irrigation applied and m² of irrigated area, determine average irrigation rate in mm
- Energy: KWh electricity, liters diesel, liters petrol

Analyze

- Trends from year to year
- Compare your resource use with golf courses nearby

Ask

- Could you use fewer resources?
- Could you be more efficient? How?
- Collecting data on resoure use is a critical place to start

Thank you!

Michael Bekken michael.bekken@nibio.no