Resisting resistance: Strategies for maintaining chemical control efficacy

Devon Carroll, Ph.D.

Herbicide resistance

herbicide DOES NOT work anymore

Resistance = the <u>acquired</u> ability of a weed to survive and reproduce following an herbicide application that is <u>normally lethal to the wild type</u>

Resistance = the <u>acquired</u> ability of a weed to survive and reproduce following an herbicide application that is <u>normally lethal to the wild type</u>

- Change in herbicide response
- Evolutionary event
- Occurs naturally in select individuals and spreads across a population

Resistance = the <u>acquired</u> ability of a weed to survive and reproduce following an herbicide application that is <u>normally lethal to the wild type</u>

- Change in herbicide response
- Evolutionary event
- Occurs naturally in select individuals and spreads across a population

Tolerance = ability of a plant to survive and reproduce after herbicide treatment

Resistance = the <u>acquired</u> ability of a weed to survive and reproduce following an herbicide application that is <u>normally lethal to the wild type</u>

- Change in herbicide response
- Evolutionary event
- Occurs naturally in select individuals and spreads across a population

Tolerance = ability of a plant to survive and reproduce after herbicide treatment

- No change in herbicide response
- No selection or genetic manipulation
- Plant was <u>never susceptible</u>

72

/

"Goosegrass" by The NYSIPM Image Gallery

655

THE R. LEW

22

/

Now what?

How herbicides work

To be effective, an herbicide must **BIND** to its site of action

- 1) Get in the plant (penetration/uptake)
- 2) Move to site of action (translocation)
- 3) BIND to site of action

Types of Resistance

Target Site (TSR)

Genetic mutation that **alters the binding site**

Confers high level of resistance

Non-Target Site (NTSR)

Blocks **reaching binding site** (e.g., uptake, translocation, *metabolism*)

Can cause multiple/cross resistance

OR

Metabolic (NTSR) Resistance

- Plant gets good at clearing an herbicide with repeated use
- Metabolism becomes strong enough to clear other compounds
- Resistance to multiple chemistries

<u>Multiple = more than 1 mode of action</u> Greater loss of tools

<u>**C**</u>ross = across <u>**c**</u>hemical <u>**c**</u>lasses Loss of a single MOA

Why does this matter?

Cost

- More applications = more \$ in labor
- Effective program/chemistry likely more expensive

Convenience

- Mechanical control is not easy
- Weeds impact playing conditions

Stewardship

- Seed can spread
- Public perception of improper pesticide use

Poa annua as a case study

- Ranked by Weed Science Society of America as #1 most troublesome turfgrass weed
- Resistant to 10 MOAs totaling 20 active ingredients in turf
 - Single population resistant to **9 chemistries**!
- Single plant can produce > 2,000 seeds per year (Mitich 1998)
- Resistance can sometimes confer a fitness enhancement (longer roots)

Management cost comparison

Before Re	sistance	After Resistance				
HERBICIDE	соѕт	HERBICIDE COST				
ROUNDUP (64 FL OZ/A)	\$2,000	PRINCEP (2 QT/A) \$1,000 100 ACRES				
BARRICADE	\$7,988	RONSTAR FLO (0.78 GAL/A) \$23,712 190 ACRES				
(46 FL UZ/A)		FINALE (1.5 GAL/A) \$2,152 35 ACRES				
APPLIED AC ACRI	ROSS 200 ES	ROUNDUP (64 FL OZ/A) \$1,550 155 ACRES				
\$9,988 = \$	50 /acre	\$28,614 = \$143 /acre				

Resistance Evolution Over Time

©2023 WeedScience.org. Dr. Ian Heap 12/04/2023

^{©2023} WeedScience.org. Dr. Ian Heap 12/04/2023

Assessing 8 Preventing (Resisting) Resistance

Influences on speed of development

Herbicide use

- Available chemistry
- Dosage
- Frequency

MOA use

- Some occur quicker
- Mixing
- Rotating

Weed biology

- Seed production
- Frequency in biotypes

Know Where You Stand

- Do you have any known existing resistance?
- Which weeds species are high risk for resistance development?
- What is the application history on your property?
- Are there instances of failed weed control?

Remember failure ≠ resistance

First consider ...

- Labeling
- Rate
- Timing of application
- Application quality
- Weather

How do we know if resistance occurs? (Field)

- Chemistry stopped working
- Control differences
- Patches of failure

Scout, Record, Monitor!

How do we know if resistance occurs? (Lab)

- Can scientifically confirm
- Heritable
- Compare to a known susceptible
- Rate response

Resistance Snapshot in Turf

- 9 species confirmed in turfgrass sites
- Grass weeds biggest issue
 - Poa annua (annual bluegrass), Eleusine indica (goosegrass), & Digitaria spp. (crabgrass)
 - Hard to control grass in grass = fewer chemical options
- Less resistance in BLW, more options... easier to rotate/mix
 - Chamaesyce maculata (spurge), Plantago lanceolata (buckhorn plantain), Soliva sessilis (burrweed)
- Sedge resistance an increasing problem

Do not use the same herbicide over and over

Mix (herbicide A + herbicide B in same year) or Rotate (herbicide A year 1, herbicide B year 2)

Mixing > rotating

Don't want escapes!

Other Methods for Preventing Resistance

- Keep site weed free
- Maintain healthy turf
- Seed quality/bedding
- Prevent escapes... before they set seed!

Scout

- Integrated pest management (IPM)
- Pesticide stewardship
 - Always apply at labeled rate and weed growth stage
 - Rate on high side when possible
 - Treatment > on young weeds

Resources

weedscience.org

Clear

Resources

weedscience.org

XLSX	Export returned data in Excel												
#	Year	Species	25			MOAs		Actives		Situations			
1	1992	Eleusine indico	ine indica		ates	Inhibition of Microtubule Assemby HRAC Group 3 (Legacy K1)		trifluralin		Cotton, Golf courses, Turf			
2	2003	Eleusine indico	2	United States (Hawaii)		PSII inhibitors - Serine 264 Bindurs HRAC Group 5 (Legacy C1 C2)		metribuzin		lurf			
3	1988	Eleusine indico	2	United States (Tennessee)		Inhibition of Microtubule Assemby HRAC Group 3 (Legacy K1)		prodiamine, pendimethalin, trifluralin		Cotton, Golf courses, Turf			
	Cverview		🍸 Filter D	Filter Data		Charts	Ш Март		X Mutations				
+ Herbicides		👋 Weeds		Č Crops		Papers		Resources					

Questions?

Devon Carroll, Ph.D. Devon.carroll@envu.com @turfgirl24

