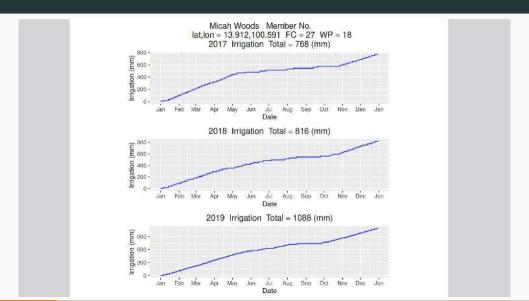
High quality playing surfaces with minimal water use

Micah Woods, Ph.D.

March 4, 2024

Asian Turfgrass Center www.asianturfgrass.com


PACE Turf www.paceturf.org

Know the water use

- How many liters (or m³) of water was used?
- · What was the irrigated area?

Use a water budget

Welcome mwoods

My Account
Log out

Home Super Journal Tour Gallery Updates Weather Highlights Insights Reference Clubhouse Editions

Thursday, April 21, 2022

Easy tool for monitoring water use

Thursday, April 21, 2022 | Permalink | Water.

As the drought persists, water restrictions are again on the horizon. In an affort to assist in estimating water budgets, the PACE water budget spreadsheet and the new PACE Evapotranspiration and Irrigation estimates provided on your Weather page will come in handy. Evapotranspiration (ET) is estimated using the same method we implemented for the GCSAA Water Europy. Estimated irrigation is computed using rainfall, soil water holding capacity and ET. Your PACE Weather page provides links to the past tive years of ET and Irrigation data. These data make calculating water budgets easy and provide assistance in communication to members and regulators. An example has been provided below.

Most turf managers are expected to create, and to follow financial budgets each year. But water budgets are still very rare — at least for now. However, water budgets may become more common in the near future. Whether you are suffering in a drought-affected area, or you are trying to comply with water use regulations, or just want to save on your water bills, a water budget can be a useful and important part of your management program.

We have created an easy to use <u>water budget spreadsheet</u> that will estimate how much irrigation water it was at your location. By calculating water budgets for previous years, you can get an idea of whether you are ever using irrigation water, or whether you are staying within generally acceptable guidelines. If you need to reduce water consumption in the future, some <u>suggestions for reducing</u> water use are described here.

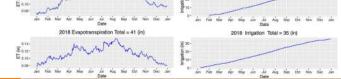
Instructions for completing the <u>water budget spreadsheet</u>. This should take you less than 10 minutes to complete. Here are the factors you need to provide:

- . Number of square feet of turf, and number of square feet of landscape
- Landscape factor (LF): This is a number used by many regulatory agencies to determine the maximum volume of water to be used in specific areas. Typically, a factor of Lo is used for golf course greens, teos, fairways and roughs. This means that these areas are usually allowed to use the full reference evaporanspiration (ET). A factor of 0.8 is typically used for landscaped areas that are not high performance furf.
- Drought factor (DF): In areas where drought is an issue, a mandatory or voluntary reduction in water budgets is sometimes
 applied. If your region has not been assigned a drought factor by regulatory agencies, you can set this value to zero.

Search PACE Turf

Search

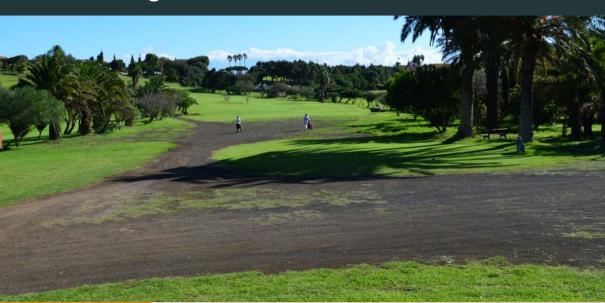
Recent Entries


- Altrogen harvested in clippings: calculation update for 2024
- A clinning volume recommendation
- MLSN test on half the course
- Normal leaf nitrogen content for putting green grasses
- Seashore paspakan tissue quidelnes
- All about OM246 testing for soil organic
- El Niño southern oscillation forecast update
- The NC State Turf Diagnostics Lab year in review 2023
- Humic and fulvic acid application "had no effect"
- Particle size distribution curve.

recommendation

- Six systematic ways to adjust the N rate
- The USGA's standard organic matter test
- Improved climate appraisal spreadsheet
- Pavoring crooping bentgrass or Poa annua with P fertilizer
- A compact height of cut gauge with a laser

- For each previous year of interest, enter the annual irrigation (inches) from your PACE Weather Irrigation estimate for your location. The Irrigation estimate takes into account rainfall througout the year.
- The spreadsheet will calculate the total estimated water use for the year, and will then calculate your water budget for each year
 that you entered data for. The budget appears in the red box on the right side of the spreadsheet. Variables that will be calculated
 include:
 - Number of gallons used on turf
 Number of gallons used on landscaped areas
 - Total galions used
 - . Total hundred cubic feet of water used
 - Total acre feet of water used


	В	C	D	E	F	G	Н	1	1	K
		Sq Ft.	Landscape Factor	Drought Factor % Reduction		Location:		San Diego golf location, 120 acres of turf, 15 acres		
	Turfgrass	5,227,200		0						
L	andscape	653,400	0.8	0						
					w	ater Budget				
Evapotranspir		piration (in)		Turf	Landscape	Total	Total	Total		
Г	Year	Total		Gallons	Gallons	Gallons	HCF	Acre feet		
Г	2017	35.0		113,979,096	11,397,910	125,377,006	167616	384.77		
Г	2018	35.0		113,979,096	11,397,910	125,377,006	167616	384.77		
Е	2019	30.0		97,696,368	9,769,637	107,466,005	143671	329.80		
Г	2020	34.0		110,722,550	11,072,255	121,794,805	162827	373.77		
Г	2021	30.0		97,696,368	9,769,637	107,466,005	143671	329.80		
A	Average	32.8								
		la	t,lon = 32.813,	well Member No. 10 = 32.813,-117.246 ranspiration Total = 42 (in)		Larry Stowell Member No. 10 lat,ion = 32.813,-117.246 FC = 27 WP = 18 2017 Irrigation Total = 36 (in)				
See	0.14 - E 0.12 -	للمتهدير	man	morning	(8)	ao -				-

Categories

- Clubhouse Editions
- Cultural Practices
- Disease
- Events
- Highlights
- InsectsInsights
- Irrigation
- Management Planning
- Other
- References
- SolWater
- Weather
- @ Weeds

Minimize irrigated area

Grass species and variety selection


"The inferior rooting, dehydration avoidance, and resultant drought resistance of the zoysiagrass genotypes in comparison to the bermudagrass genotypes results in a higher irrigation requirement to maintain actively growing, green turf conditions in the case of the zoysiagrass genotypes."

Sifers & Beard, 1997¹

¹Sifers, S.I. and J.B. Beard. 1997. Bermudagrasses superior in dehydration avoidance and drought resistance when compared to zoysiagrasses. Turfax. Vol V, No. 4, pp 4–6.

DROUGHT STRESS

ORIGINAL ARTICLE

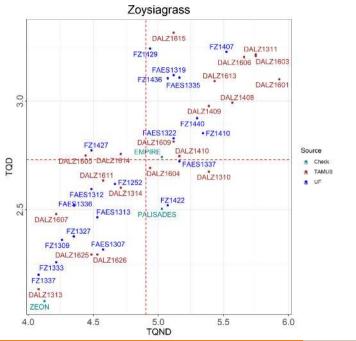
Warm-season turfgrass species genotype-by-environment interaction for turfgrass quality under drought

Beatriz Tome Gouveia¹ | Ambika Chandra² | Kevin E. Kenworthy³ | Paul L. Raymer⁴ | Brian M. Schwartz⁵ | Yangi Q. Wu⁶ | Susana R. Milla-Lewis¹

¹Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA

²Department of Soil and Crop Sciences, Texas A&M AgriLife Research-Dallas, Dallas, Texas, USA

³Agronomy Department, University of Florida, Gainesville, Florida, USA


Florida, Gainesville, Florida, USA

⁴Department of Crop and Soil Sciences.

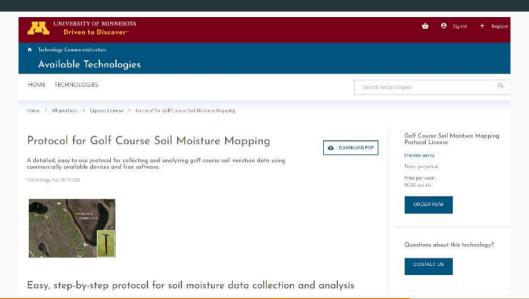
of available water for irrigation of turfgrass areas. Efforts on breeding for drought resistance have increased over the past several years across the United States. Thus, the objectives of this study were to evaluate the performance of bermudagrass (Cynodon spp. Rich.), St. Augustinegrass (Stenotaphrum secundatum (Walter) Kuntze).

One of the biggest challenges the turfgrass industry is currently facing is limitations

Abstract

Sensible fertilizer use

Maximize soil organic matter


Check salinity and leach carefully

Use soil water meters or sensors

Implement irrigation zones

Upgrade irrigation system

Use soil surfactants

Published October 18, 2018

EUROPEANTURFGRASS SOCIETY CONFERENCE

Combining Trinexapac-Ethyl with a Soil Surfactant Reduces Bermudagrass Irrigation Requirements

Matteo Serena, Mino Sportelli, Elena Sevostianova, Rossana Sallenave, and Bernhard Leinauer*

ABSTRACT

Soil surfactants and plant growth regulators (PGR) have shown potential to lower irrigation requirements and increase turfgrass quality under drought conditions. A study was conducted from 2014 to 2016 to investigate the soil surfactant Revolution, (modified methyl capped block copolymer [Aquatrols, Paulsboro, NJ]), or the plant growth regulator 'PrimoMaxx' (A.I. trinexapac-ethyl [4-(cyclopropylhydroxymethylene)-3,5-dioxocyclohexanecarboxylic acid]) (Syngenta, Basel, Switzerland), or a combination of both on percent green coverage, turfgrass color, quality, soil volumetric water content (VWC) and uniformity on Princess 77 bermudagrass (Cynodon dactylon L.) grown on a loamy sand (mixed, thermic Typic Torripsamments) and irrigated at either 80%, 65%, or 50%

AWNS AND turfgrass areas represent the largest irrigated crop in the United States, accounting for approximately 163,800 km² (±35,850 km²) (Milesi et al., 2005; Morris et al., 2005). These areas provide benefits such as the reduction of heat island effects, soil erosion control, carbon sequestration, cool and safe surfaces for exercise and athletic activities, to name a few (Beard and Green, 1994; Leinauer et al., 2010; Wang et al.; 2016). In addition to the aforementioned environmental benefits, the turfgrass industry contributes billions of dollars annually to the United States economy (Haydu et al., 2008). However, despite these advantages, as a non-food and fiber producing crop, turfgrass water usage is a major concern in many communities. For this reason, multi-pronged approaches to conserve irrigation water such as the use of afternative water sources, the use of effi-

Let it be dry

Use pigments

- 1. Know the water use
- 2. Use a water budget
- 3. Minimize irrigated area
- Grass species and variety selection
 Sensible fertilizer use
- 6. Maximize soil organic matter
- 7. Check salinity and leach carefully
- 8. Use soil water meters or in-ground sensors
- 9. Implement irrigation zones10. Upgrade irrigation system
- 11. Use soil surfactants
- 12. Let it be dry (use less water)
- 13. Use pigments

Online handout with slides & more info

www.asianturfgrass.com www.paceturf.org